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University, Kyoto 606, Japan

Received 14 May 1998

Abstract. It is well known that a sparsely coded network in which the activity level is extremely
low has intriguing equilibrium properties. In this work, we study the dynamical properties of
a neural network designed to store sparsely coded sequential patterns rather than static ones.
Applying the theory of statistical neurodynamics, we derive the dynamical equations governing
the retrieval process which are described by some macroscopic order parameters such as the
overlap. It is found that our theory provides good predictions for the storage capacity and the
basin of attraction obtained through numerical simulations. The results indicate that the nature
of the basin of attraction depends on the methods of activity control employed. Furthermore, it
is found that robustness against random synaptic dilution slightly deteriorates with the degree
of sparseness.

For the purpose of constructing more realistic mathematical neural network models (e.g.
the Hopfield model [1]), so-called ‘random’ patterns, which have been used for simple
theoretical treatments, have been reconsidered. In a network capable of processing these
random patterns, it is frequently supposed that statistically half of the neurons are allowed
to be active. However, such a situation is not realistic for two reasons. First, according to
the results of physiological studies, the activity level of real neural systems is thought to be
low. Second, in a meaningful pattern, information is generally encoded by a small fraction
of bits in a background which occupies most of the total area. With these points in mind,
neural networks loading sparsely coded patterns have been studied by many authors [2–7].
These authors have reported that the maximal number of patterns stored in the network
increases as the fraction of active neuronsa decreases. Furthermore, the storage capacity in
such a situation diverges as−1/a ln a which is the optimal asymptotic form [8]. However,
considering the fact that the information content in a single pattern is reduced with the
degree of sparseness, we cannot immediately conclude that sparse coding enhances the
associative ability. Rather, what we should note is that the optimal bound is obtained even
for models with a relatively simple Hebbian learning rule.

While, owing to these studies, progress in the understanding of the equilibrium properties
of sparsely coded networks has been made, many unsolved problems remain in view of
dynamical aspects. In order to grasp a network’s characteristics properly, it is necessary to
consider the dynamical properties such as the basin of attraction. Recently, several theories
treating retrieval processes have been proposed [9–14]. Among these, we note that the
method of statistical neurodynamics is practically useful, because it enables us to describe
long-term behaviour [13, 14]. However, for sparse coding, there is quantitative discrepancy
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between the results obtained from this theory and numerical simulation in the case of auto-
association, which implies a difficulty in treating the strong feedback mechanism with this
model [15]. On the other hand, sparse coding for sequential associative memory has not yet
been studied in detail [17, 18]. In this letter, we study this point by applying the method
of statistical neurodynamics to a model for sequential associative memory.

Let us consider the situation in which a neural network which consists ofN McCulloch–
Pitts neurons is designed to store sequential patterns rather than static ones. Each neuron
obeys discretesynchronousdynamics described by

Si(t + 1) = F [hi(t)] (1)

hi(t) =
N∑
j=1

JijSj (t)− θ (2)

whereSi(t) and hi(t) are the state and the internal potential of theith neuron at timet ,
respectively. Although we have written the transfer function in the general formF(u),
we consider the caseF(u) = 2(u); i.e. F(u) is a step function. In this case, the state
Si(t) takes only two values, 1 (firing state) and 0 (resting state). The quantitiesθ andJij
represent the uniform threshold and the strength of the synaptic connection between theith
andj th neuron, respectively.

We assume that the stored patterns are generated with the probabilityP(ξ
µ

i ) =
aδ(ξ

µ

i − 1) + (1 − a)δ(ξµi ). Here ξµi is the state of theith neuron in theµth pattern.
Then, the activity for this network,1

N

∑
i ξ

µ

i , assumes an average value ofa. In particular,
the casea → 0 is referred to as ‘sparse coding’. In order to make the network possess
associative memory dealing with these patterns, theJij ’s must be designed appropriately.
In this letter, to construct a network capable of recalling a sequence ofαN patterns defined
by such asξ1→ ξ2→ · · · → ξαN → ξ1→ · · ·, we adopt covariance learning

Jij = 1

a(1− a)N
αN∑
µ

(ξ
µ+1
i − a)(ξµj − a) (3)

which is usually adopted in the context of learning the sparsely coded patterns.
For such a network, the macroscopic state is found to be described by the following

order parameters:

mµ(t) = 1

a(1− a)N
N∑
j

(ξ
µ

j − a)Sj (t) (4)

x(t) = 1

aN

N∑
j

Sj (t). (5)

Here,mµ(t) is the overlap with the target patternξµ. As the configuration of the network
becomes close to the target pattern, this value approaches unity. The functionx(t) represents
the activity of the network. On studying the retrieval processes, we mainly discuss the time
evolution of these parameters.

From this point, we consider the ‘condensed’ situation in which only one overlap is
sizable: mρ(t) ∼ O(1), andmµ(t) ∼ O(1/

√
N)(µ 6= ρ). Here, ξρ is the pattern to be

retrieved at timet . Then, the internal potentialhi(t) in (2) can be separated as

hi(t) = ξ̄ ρ+1
i mρ(t)− θ + 1

a(1− a)N
N∑
j 6=i

αN∑
µ6=ρ

ξ̄
µ+1
i ξ̄

µ

j Sj (t) (6)
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where we have written̄ξµi as ξµi − a. In this process, the first and second terms in (6)
are together regarded as the signal to induce recollection of the target patternξ

ρ+1
i at the

subsequent time step,t+1, while the remaining term is regarded as noise. For convenience,
we define the noise termzi(t) as

zi(t) = 1

a(1− a)N
N∑
j 6=i

αN∑
µ6=ρ

ξ̄
µ+1
i ξ̄

µ

j Sj (t). (7)

The quantityzi(t) is the crosstalk noise from the non-target patterns. The essence of the
theory is to treat the crosstalk noisezi(t) as Gaussian noise with mean 0 and variance
σ(t)2 [18]. It has been confirmed numerically that this assumption is valid as long as the
network succeeds in retrieval [19].

Now we derive the dynamical equations for the overlapm(t) and the activityx(t). The
definition of the overlap leads to the equation

mρ+1(t + 1) = 1

a(1− a)N
N∑
i

〈〈ξ̄ ρ+1
i F [ξ̄ ρ+1

i mρ(t)− θ + zi(t)]〉〉ξ (8)

where〈〈· · ·〉〉ξ denotes the average over the stored patterns. In the same way, we can write
the equation for the activityx(t),

x(t + 1) = 1

aN

N∑
i

〈〈F [ξ̄ ρ+1
i mρ(t)− θ + zi(t)]〉〉ξ . (9)

Next, we examine the time development of the varianceσ(t)2. Expressingzi(t + 1) as

zi(t + 1) = 1

a(1− a)N
N∑
j 6=i

αN∑
µ6=ρ+1

ξ̄
µ+1
i ξ̄

µ

j F [hj (t)] (10)

we must consider the dependence ofhj (t) on ξµj when summing overµ. In the internal

potentialhj (t), the termξ̄ µj m
µ−1(t) is estimated to be O(1/

√
N). Therefore, we expand the

functionF [hj (t)], obtaining

zi(t + 1) = 1

a(1− a)N
N∑
j 6=i

αN∑
µ6=ρ+1

ξ̄
µ+1
i ξ̄

µ

j Ŝj (t + 1)+ U(t)zi(t) (11)

U(t) = 1

a(1− a)N
N∑
j

〈〈(ξ̄µj )2F ′[hj (t)]〉〉ξ . (12)

We now assume that̂Sj (t + 1) in (11) is independent ofξµj . Squaring (11), we obtain

zi(t + 1)2 = αax(t + 1)+ U(t)2zi(t)2

+U(t) 1

a2(1− a)2N2

∑
j,k

∑
µ,ν

ξ̄
µ+1
i ξ̄ ν+1

i ξ̄
µ

j Ŝj (t + 1)ξ̄ ν−1
k Sk(t). (13)

Here the first and second terms in (13) come from the square of the first and the second
terms in (11), respectively. The last term in (13) arises from the product of the first and
the second terms in (11). For the same reason, the termSk(t) in (13) must be expanded.
Following this procedure iteratively, we can take into account temporal correlations up to
the initial time. Averaging (13), the equation forσ(t) takes

σ(t + 1)2 = αax(t + 1)+ U(t)2σ(t)2+
t+1∑
n=1

C(t + 1, t + 1− n) (14)



L616 Letter to the Editor

Figure 1. From the top, the equilibrium activity (broken curve), equilibrium overlap (dotted
curve), and basin of attraction (full curve) fora = 0.1 andθ = θopt(= 0.47). The ordinate is
the overlapm or the activityx, and the abscissa is the loading rateα. The data points indicate
simulation results withN = 2000 for 20 trials. We take the initial activity asx(0) = 1.0. The
inset shows the dependence of the storage capacityαc on the uniform thresholdθ . The value
at the peak of the curve corresponds toθopt.

with

C(t + 1, t + 1− n) =
n∏
τ=1

U(t + 1− τ) 1

N

∑
j

Ŝj (t + 1)Ŝj (t + 1− n)

×
[

1

a2(1− a)2N
∑
µ

(ξ̄
µ+1
i )2ξ̄

µ

j ξ̄
µ−n
j

]
. (15)

Sinceξµ and ξµ−n are independent of each other, except whenn = αN, 2αN, 3αN, . . .,
the last summation in the above equation vanishes. Although the correlations forn =
αN, 2αN, 3αN, . . . remain, their effect can be regarded as negligible in the limitN →∞.
Finally, we obtain

σ(t + 1)2 = αax(t + 1)+ U(t)2σ(t)2. (16)

This derivation is essentially equivalent to that by Amari [18].
Consequently, the behaviour of the network is described by the equations

m(t + 1) = 1− 1
2 [erfc(φ1)+ erfc(φ0)] (17)

x(t + 1) = 1− 1

2

[
erfc(φ1)− 1− a

a
erfc(φ0)

]
(18)

σ(t + 1)2 = αax(t + 1)+ 1

2π
[a exp(−φ2

1)+ (1− a) exp(−φ2
0)]

2 (19)
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Figure 2. A plot similar to that in figure 1 for the caseθ = 0 andg = gopt(= 0.56). The other
parameters are the same as in figure 1. The inset shows the dependence of the storage capacity
αc on the inhibitory interactiong whenθ = 0. The value at the peak of the curve corresponds
gopt.

with

φ1 = (1− a)m(t)− θ√
2σ(t)

(20)

φ0 = am(t)+ θ√
2σ(t)

(21)

where we have setF(u) = 2(u) and replaced the site average1
N

∑N
i . . . with the average

over the Gaussian noise〈· · ·〉z(t) in the limit N → ∞. For initial values, we can set
σ(0) = √αax(0) and choose arbitrary values form(0) andx(0).

In a sparsely coded network, activity control is an important factor for good retrieval
quality. Introducing the global inhibitory interaction such as

J inh
ij = Jij −

g

aN
(22)

the activity can be dynamically controlled [3, 7]. The second term contributes as a global
inhibitory interaction, andg represents its strength. If the activity level of the network at
time t , x(t), greatly increases, each neuron receives a stronger inhibitory signal−gx(t), so
that x(t + 1) decreases. We can undertake a treatment of the retrieval process in this case
in a manner similar to that undertaken above. We then find that equations (20) and (21) are
modified as

φ1 = (1− a)m(t)− gx(t)− θ√
2σ(t)

(23)
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Figure 3. A plot similar to that in figure 1 for the self-control model. The other parameters are
the same as in figure 1.

φ0 = am(t)+ gx(t)+ θ√
2σ(t)

. (24)

Another model possessing an activity control mechanism is that with a time-dependent
threshold which is calculated at each time step so that the activity of the network can be
kept the same as that of the retrieved pattern [15]. Recently, as an improved model, a
‘self-control’ model has been proposed [16]. In this model, the time-dependent threshold
θ(t) adapts itself according to the activitya and the variance of crosstalk noiseσ(t). If a
is sufficiently small, it takes the formθ(t) = σ(t)√−2 lna. However, from the biological
point of view, it is not plausible that the network monitors the statistical quantity of the
crosstalk noise. Hence, in this paper, in place ofσ(t), we choose the leading term ofσ(t),√
aαx(t). Then, we simply use

θ(t) =
√
−2x(t)αa ln a (25)

in place of the original expression.
We now compare our theoretical results with numerical simulations. Figures 1–3 display

the results of the model using only a uniform thresholdθ , a uniform thresholdθ and the
inhibitory interactiong, and a self-control thresholdθ(t), respectively. In the first two
cases,θ andg are optimized so as to maximize the storage capacity. From the results, it
is found that the theoretical curves provide a good prediction of the retrieval properties in
the network. Although with respect to storage capacity, these three cases differ very little,
the differences among the activity control methods are reflected in the shapes of the basin
of attraction. While the basin gradually becomes narrow asα increases in the first case, the
basin forα > 0 is wider than that forα = 0 in the second case. Furthermore, in the later
case, the minimum initial overlap for which the network succeeds in retrieval becomes zero
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Figure 4. Dependence of the normalized storage capacityα∗c (c) on the ratio of connected
synapsesc for a = 0.5, 0.1, 0.001.

whenα = 0.
Next, we investigate robustness against random synaptic dilution. In this case, a

randomly diluted synapse is represented by the random variablecij :

J̃ij = cij

c
Jij . (26)

The variablecij takes the value 1 with probabilityc, and is 0 otherwise. In other words,c
represents the ratio of connected synapses. It is known that random synaptic dilution can
be statistically regarded as static noise in a synapse [20], and ultimately plays the role of a
static noise, additional to the crosstalk noise in the retrieval dynamics [21]. Therefore, the
resultant equation for the noise is modified as

σ̃ (t + 1)2 = σ(t + 1)2+ aα1− c
c

. (27)

The last term in (27) is attributed to the variance of synaptic noise caused by dilution. In
addition,φ1 andφ0 become

φ1 = (1− a)m(t)− θ√
2σ̃ (t)

(28)

φ0 = am(t)+ θ√
2σ̃ (t)

. (29)

In order to examine the deterioration experienced with the decrease in the ratio of
connectionc at each activitya, we define the normalized storage capacityα∗c (c) =
αc(c)/αc(1), whereαc(c) is the storage capacity when the ratio of connection isc. Figure 4
displays the normalized storage capacityα∗c (c) as a function ofc. As indicated by these
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results, even if the activity levela becomes small, the shape of the curve representing the
degree of deterioration does not change significantly. However, asa becomes small, the
storage capacity decreases almost linearly with the increase in the degree of dilution, 1− c.
With regard to the basin of attraction, the model with the optimized uniform thresholdθ ,
which has the most narrow basin, is the most robust of the three.

In conclusion, we have investigated three types of the activity control mechanisms
to retrieve sparsely coded sequential patterns associatively. These types are the optimized
uniform threshold, the global inhibitory interaction, and the self-control threshold. Although
these mechanisms enhance the retrieval ability of the associative memory, that is, enlarge
the basins of attraction, we found that the self-control mechanism has the widest basin.
In this mechanism, it is desirable that there is no need to tune parameters by hand. It is
also shown that, as the activity level becomes low, the robustness against random synaptic
dilution deteriorates slightly. For low activity, the storage capacity decreases almost linearly
with the ratio of connected synapsec.

Finally, we briefly mention the dependence of the storage capacity on the activity level
a. Also, in this case, we have numerically confirmed that the storage capacity diverges
as−1/a ln a in the limit a → 0, and it seems to approach such an asymptotic form quite
slowly [10].

We express our gratitude to M Okada and T Fukai for helpful comments, and Professor T
Munakata for valuable discussions. This work was supported by the Japanese Grant-in-Aid
for Science Research Fund from the Ministry of Education, Science and Culture.
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[16] Dominguez D R C andBollé D 1998Phys. Rev. Lett.80 2961
[17] Domany E, Kinzel W and Meir R 1989J. Phys. A: Math. Gen.22 2081
[18] Amari S 1988Neural and Synagetic Computers(Berlin: Springer) p 85
[19] Nishimori H and Ozeki T 1993J. Phys. A: Math. Gen.26 859
[20] Sompolinsky H 1986Phys. Rev.A 34 2571
[21] Kitano K and Aoyagi T 1998Phys. Rev.E 57 5734


